
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 321 (2009) 913–935

www.elsevier.com/locate/jsvi
Intermittent gear rattle due to interactions between forcing
and manufacturing errors

James R. Ottewilla,�, Simon A. Neilda, R. Eddie Wilsonb

aDepartment of Mechanical Engineering, University of Bristol, Bristol BS8 1TR, UK
bBristol Centre for Applied Nonlinear Mathematics, University of Bristol, Bristol BS8 1TR, UK

Received 27 May 2008; received in revised form 28 August 2008; accepted 29 September 2008

Handling Editor: M.P. Cartmell

Available online 18 November 2008
Abstract

The interaction between eccentricity and an external forcing fluctuation in gear rattle response is investigated

experimentally. The experimental rig consists of a 1:1 ratio steel spur gear pair, the input gear being controlled in

displacement and the output gear being under no load. Gear transmission errors recorded using high accuracy encoders are

presented. Large variations in backlash oscillation amplitude are observed as the relative phase of the input forcing and the

sinusoidal static transmission error due to eccentricity is varied. A simplified mathematical model incorporating

eccentricity is developed. It is compared with experimental findings for three different gear eccentricity alignments by way

of plots relating backlash oscillation amplitude to forcing amplitude and phase relative to eccentricity sinusoid. It is shown

that eccentricity does not fully account for the experimentally observed large variations in amplitude. Through analysis of

the experimental data, it is suggested that further tooth profiling errors may explain the discrepancies.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that gears can rattle by oscillating within their backlash gap [1–3]. Intermittent operation is
also possible, and models can display both quiet (permanently meshed) and rattling behaviours under
seemingly identical operating conditions [3–5]. Detailed reviews of gear modelling are given by Özgüven and
Houser [6] and Parey and Tandon [7].

An undesirable feature in gear dynamics is eccentricity [8–13]. Eccentricity may be introduced during
manufacture, or during set-up via shaft misalignment, imperfections in grub screw (set screw) tightness or ill-
fitting bearings. In practice it is impossible to completely remove eccentricity. In this paper we are interested in
modelling the interaction between external drive fluctuations and the static transmission error [4,14], which
incorporates profile errors due to tooth deflection [15], eccentricity, and other manufacturing errors such as
the surface finish on each tooth, which are known to have a large effect on gear vibrations [16–18].
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

a amplitude of disconnection
A amplitude of fluctuating change in length

of centre distance
b mesh interaction force
B backlash describing function
c viscous linear coefficient
C1;2 integration constants
d phase of fluctuating change in length of

centre distance
eðtÞ static transmission error due to eccentri-

city
E eccentricity
F amplitude of combined input and eccen-

tricity fluctuation
g gravity
G phase of combined input and eccentricity

fluctuation
H amplitude of forcing fluctuation at pitch

point
Hcrit amplitude of forcing fluctuation at which

permanent meshing cannot be achieved
Hmin minimum amplitude of forcing fluctua-

tion for periodic impacting solutions to
exist

I moment of inertia
J phase of forcing fluctuation at pitch

point
k stiffness
m gear mass
M number forcing periods between impacts

on the positive drive boundary
N length of the line of action
q phase of input fluctuation acting at a

sinusoidally varying centre distance
rb base circle radius
reff distance from the shaft centre to the pitch

point
R centre distance between gears
R effective pitch circle radius
S initial displacement due to static trans-

mission error
t time
TR tooth thickness at centre distance R

TR tooth thickness at centre distance R

u linear displacement in the base plane

U amplitude of fluctuating change in static
transmission error due to eccentricity

v linear component of angular motion
V initial velocity due to static transmission

error
W simplification of the input forcing fluc-

tuation angle just before impact for a
periodic trajectory

x dynamic transmission error
x̂ dynamic transmission error recentred in

a region of system deformation and
positive drive

X horizontal coordinate
Y vertical coordinate
z angle that reff makes with the X -axis
b half backlash size (rad)
g angle that R makes with the X -axis (rad)
G amplitude of input fluctuation acting at a

sinusoidally varying centre distance
d non-dimensional damping coefficient
� non-dimensionalised torque oscillation

amplitude
Z non-dimensional mass imbalance
y rotational displacement (rad)
k non-dimensionalised stiffness coefficient
x pressure angle (rad)
B coefficient of restitution
t non-dimensionalised time
timpactþð�Þ non-dimensionalised time an instant

before(after) impact
tloss non-dimensionalised time of contact loss
f phase of forcing input
C alignment of eccentricities (rad)
O gross rotation rate (Hz)

Subscripts

ð Þ1 denotes driving gear
ð Þ2 denotes driven gear
ffð ÞX denotes angle relative to X -axis
ffð ÞN denotes angle relative to the line of action

Superscripts

_ð Þ derivative with respect to time
ð Þ
0 derivative with respect to non-dimensio-

nalised time
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Our experimental rig consists of two identical meshing spur gears, with the drive gear run at a constant
angular velocity combined with a sinusoidal displacement input whose amplitude and phase are varied. The
phase of input is important owing to its interaction with the static transmission error. During these
experiments, the relative angular displacement of the gear pair is recorded and the results compared with
mathematical models that we build later in the paper.

By using a displacement input, the rig mimics a highly loaded drive gear meshing with a lightly loaded ‘free’
gear, rather like an unselected gear pair in a manual automotive gearbox, which is known to be susceptible to
rattle [1,2,19,20]. In this example, the drive gear input may be thought of as a displacement excitation as the
driven gear does not affect the drive gear dynamics and the input fluctuation is due to the engine acyclism [21].
Recent advances in the design of certain automotive driveline components, such as engines which radiate less
noise [22] or dual clutch transmissions [23] have brought gear rattle to prominence.

The structure of this paper is as follows. In Section 2 we describe our rig and demonstrate backlash
oscillations with a range of amplitudes when the amplitude of the forcing input is fixed. Then in Section 3 we
develop a mathematical model for the relative gear motion which incorporates eccentricity, and which is
developed further in Section 4 under simplifying assumptions of high stiffness and high damping which match
the experimental set-up. Sections 5 and 6 develop contour plots which relate the disconnection amplitude to
the phase and amplitude of the input forcing for theory and experiment, respectively. Fair agreement is found,
and Section 7 discusses how modelling the surface finish of the gears could explain the discrepancies. Finally
Section 8 presents conclusions and discusses practical consequences for the research.
2. Experimental results

2.1. Description of experimental rig

The experimental rig, shown in Fig. 1 (previously described in Ref. [24]), has been designed to capture
relative gear trajectories. It consists of a 5.5Nm servomotor, which rotates a 1:1 meshing gear pair. The gears
are module 6, 108mm pitch circle diameter, steel spur gears. The centre distance of the gears has been
increased by 3.5mm over the standard separation distance to increase the backlash size to 3� 10�2 rad,
allowing improved sensor resolution. The gears used in this experiment were precision ground to satisfy BS436
Grade 6 (equivalent to ISO 1328-2) standard. Once manufactured, the maximum profile error was found to be
0.0002 in ð5:1� 10�6 mÞ, the maximum tooth to tooth error was 0.0003 in ð7:6� 10�6 mÞ, the maximum tooth
alignment error was 0.0002 in ð5:1� 10�6 mÞ and the maximum total composite profile error being found to
be 0.0018 in ð4:57� 10�5 mÞ. There were no profile or lead modifications and the face width was 7.5mm.
Inertial Mass

Drive Gear

Encoder

Servomotor

Driven Gear

Encoder

Fig. 1. A photograph of the experimental rig showing the drive shaft on the left-hand side and the driven shaft on the right-hand side.
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The maximum driving and driven gear eccentricities were measured to be 0:05588� 10�3 and 0:04826�
10�3 m, respectively. The viscous damping coefficient was measured using basic run-down tests to be
approximately 0:007 kgm2 s�1. The rig is bolted down to a steel table of large mass, to eliminate vibrational
modes within the rig base plate. The experiment is run without lubrication in order to reduce modelling
complexity.

The drive gear is driven by a servomotor controlled by a dSpace 1104 controller via a servodrive. Attached
to both the drive and driven shafts, close to the gears, are 10,000 pulses per revolution optical encoders which
through quadrature can be increased to a resolution of 2:5� 10�5 of a revolution or 0.0091. Gear angular
displacement readings from the encoders are input into dSpace. A desired displacement input to the drive gear
is defined and a proportional plus derivative feedback controller is implemented within dSpace, using the
angular displacement of the drive gear obtained from the encoder as a feedback signal.
2.2. Static transmission error due to eccentricity

When driving any eccentric gear pair at a constant gross rotation rate, the transmission error of the two
gears will have a sinusoidal component whose frequency will match the gross rotation rate of the pinion. This
is because the effective centre distance changes between the gears thus changing the meshing tooth thickness
and contact length with angular position of the gears. For 1:1 ratio gear pairs the amplitude of this sinusoid
will remain approximately constant and a single gear rotation is sufficient to obtain the amplitude and phase
of the sinusoid. This amplitude may be varied by altering which teeth mesh together and hence changing the
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Fig. 2. Experimental plots of how the relative shaft displacements for the experimental system running at a constant gross rotation rate of

1Hz vary with time, for three different relative gear orientations. The relative orientation of the eccentricities changes the amplitude of the

oscillations at the frequency of the gross rotation rate. Three alignment cases are considered: (a) Case A: the smallest amplitude oscillation.

(b) Case B: a midrange amplitude of oscillation. (c) Case C: a large amplitude oscillation.
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relative alignment of the eccentricities. The relative shaft displacements for a constant input velocity (1Hz
rotation rate) are shown in Fig. 2. As the amplitude of these displacements is very low there is some
quantisation of data due to sensor resolution. To smooth this out we have applied a simple 12 point, 0.012 s
moving average window to the data. The alignments investigated were chosen so as to create the smallest
possible eccentric oscillation, shown in Fig. 2(a), a midrange amplitude eccentric oscillation, shown in
Fig. 2(b), the largest possible eccentric oscillation, shown in Fig. 2(c). We will refer to these as Cases A, B and
C, respectively. The plots shown in Fig. 2 deviate from a perfect sinusoid due to additional components
of the static transmission errors. When the change in gear centre distance over a rotation of the pinion is low
(due to small eccentricities or good alignment of similar magnitude eccentricities) the response is dominated by
tooth profile errors. Note that in each alignment case, the tooth meshing sequence is changed and hence the
contribution due to gear tooth profile errors will change.
2.3. Fluctuating drive tests

Experiments were conducted at the three different gear eccentricity cases shown in Fig. 2 in order to
investigate the effect that the forcing due to the change in centre distance due to eccentricity had on gear rattle.
The experimental input motion is given by

y1 ¼ 2pOtþ � cosð2pOtþ fÞ, (1)

where y1 is the input displacement, t is the time in seconds, O is the gross rotation rate of the gears (1Hz for
these experiments), � is the amplitude of the sinusoidal forcing (values ranging between 0.39 and 0.46 rad in
increments of 0.01 rad) and f is the phase of the forcing (values ranging between 0 and 2p rad in increments of
0.7854 rad). Changing the phase of the forcing effectively changes the angular position (and consequently
for a 1:1 ratio gear pair, which tooth pair is in mesh) at which the maximum of the forcing occurs. Figs. 3–5
show the relative gear displacements for a sinusoidal forcing of 0.43 rad, for three different phases of forcing
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Fig. 3. A small amplitude relative gear trajectory, for a forcing amplitude of � ¼ 0:43 rad and an input phase of 4.3072 rad relative to the

eccentricity sinusoid. (a) The periodically fluctuating component of the displacement input against time. (b) How the relative shaft

displacement (shown in solid line) varies with time. The dashed lines are the backlash boundaries, which fluctuate due to gear eccentricity.
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Fig. 4. A variable amplitude relative gear trajectory, for a forcing amplitude of � ¼ 0:43 rad and an input phase of 0.3654 rad relative to

the eccentricity sinusoid. (a) The periodically fluctuating component of the displacement input against time. (b) How the relative shaft

displacement (shown in solid line) varies with time. The dashed lines are the backlash boundaries.
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(using eccentricity Case C). For each figure, plot (a) shows the displacement of the fluctuating component of
the input and plot (b) shows the associated relative gear displacement. To remove transient effects the plots
start 35 s after the sinusoidal forcing is applied. The positive and negative boundaries corresponding to the
relative displacements at which the gears impact are plotted as dotted lines.

We are interested in the amplitude of the ‘free’ gear oscillation within the backlash space (i.e. the movement
away from the ideal permanent contact boundary). Henceforth the relative gear oscillations away from the
ideal permanent contact boundary will be called ‘disconnections’. Each experiment displays a distinct
disconnection of the two gears at the frequency of input forcing, shown by a sudden disconnection away from
the top ‘positive drive’ boundary. Upon remeshing, the gears return to smaller amplitude impacts.

It is evident that there are at least two sorts of motion at this level of forcing; Fig. 3 shows a repeating, small
amplitude disconnection of the two gears, whereas Fig. 5 shows a large amplitude repeating pattern where the
drive gear tooth actually completely traverses the freeplay region and impacts the opposing driven gear tooth,
so that torque transfer is reversed. Fig. 4 shows a gear trajectory that displays non-repeating disconnection
amplitudes. To check that this non-repeating behaviour is not due to transients, a test over 660 s was
conducted, which showed that no significant changes occur in the response.

3. Mathematical model of a gear pair with eccentricity

3.1. Definition of variables

Fig. 6 shows the important geometrical features of a gear pair incorporating eccentricity (grossly exaggerated
for clarity). Subscript 1 denotes a drive gear or shaft while subscript 2 denotes driven gear or shaft. y1 and y2 are
the angular motions about the shaft centres, y1 being measured in an anticlockwise direction and y2 being
measured in a clockwise direction. rb is the base circle radius of each gear and x is the pressure angle. Line CC is
the common pitch circle tangent, while length N is the length of the line of action to the pitch point. For simple
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Fig. 5. A large amplitude relative gear trajectory, for a forcing amplitude of � ¼ 0:43 rad and an input phase of 1.9503 rad relative to the

eccentricity sinusoid. (a) The periodically fluctuating component of the displacement input against time. (b) How the relative shaft

displacement (shown in solid line) varies with time. The dashed lines are the backlash boundaries.
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Fig. 6. Model of an eccentric gear pair.
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analysis of gravitational terms, the shaft centres are assumed to be in the same horizontal plane, distance 2R

apart. The gear centres are offset by eccentricity, E. R is the centre distance, or half the distance between the
two shaft centres and R is the effective pitch circle radius of the gear pair. reff is the distance from the midpoint
of the line connecting the two gear centres to the shaft centres and v is the linear component of the angular
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motion, acting at reff and in a direction perpendicular to the direction of reff . z is the angle of the direction of reff
with respect to the horizontal. g is the angle that the line connecting the two gear centres makes with the
horizontal. From these features, further geometrical properties will be established in the following analysis.

3.2. Sinusoidal static transmission error due to eccentricity

3.2.1. Mathematical model

The effective pitch circle radius of the gear pair, R, can be found using Pythagoras’ Theorem. By assuming
that the eccentricities are small, E1;E25R, and that the angle of the driven gear is approximately the angle of
the drive gear plus an initial angle defined by the alignment of the eccentricities of the gears, y2 � y1 þC, we find

R ¼ Rþ A sinðy1 þ dÞ, (2)

where

A ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

1 þ E2
2 � 2E1E2 cosðCÞ

q
and d ¼ arctan

E2 cosC� E1

�E2 sinC

� �
. (3)

The size of the backlash between meshing teeth is dependent on the centre distance between the meshing gears. It
can be shown (see example Ref. [25]) that the change in tooth thickness with change in centre distance is given by

TR

2R
�

TR

2R
¼ tan x� x� tan arccos

rb

R

� �� �
þ arccos

rb

R

� �
, (4)

where TR, is the tooth thickness at centre distance R, and TR, is the tooth thickness at centre distance R, both
measured as an arc length. The pressure angle x may be calculated using

x ¼ arccos
rb

R

� �
. (5)

By substituting Eq. (5) into Eq. (4) and using leading order approximations for the trigonometric terms we
obtain

TR

2R
�

TR

2R
¼

1

rb

1�
r2b
R2

� �
AR sin ðy1 þ dÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � r2b

q . (6)

Now consider the static transmission error along the line of action due to eccentricity. Increasing the centre
distance increases the length of the line of action. Therefore, to remain in contact with the driving gear, the
driven gear will have to travel the change in length of the line of action and the change in its own tooth thickness
along the line of action. This results in a sinusoidal relative displacement between the gears for each rotation,
which can be approximated to

eðtÞ ¼ U sinðy1 þ dÞ; U ¼
r2b
R2

ARffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2b

q . (7)

3.2.2. Experimental validation

In order to validate the static transmission error due to eccentricity calculated in Section 3.2.1, two sets of
module 6, 108mm pitch circle diameter, steel spur gears of differing eccentricities were tested at various
orientations. The gear eccentricities were measured in situ on the experimental rig described in Section 2.1, so
as to include any eccentricities due to the mounting of the gears on the shafts. The eccentricity was measured
at the pitch circle to a resolution of 1� 10�4 of an inch ð� 2:54� 10�6 mÞ. For the first gear pair each gear had
an eccentricity of 0:125� 10�3 m. For the second gear pair, the driving gear had an eccentricity of 0:04826�
10�3 m whilst the driven gear had an eccentricity of 0:05588� 10�3 m. Note that it is the second, more
accurate, pair that is used in all of the other experiments presented in this paper.

The experiments were run at a constant angular velocity of 1Hz for 20 s, where the eccentricity sinusoid was
recorded. Then the experiment was stopped and the gears were realigned so that each tooth would be meshing



ARTICLE IN PRESS

Gear Alignment, Ψ [rad]

A
m

pl
itu

de
 o

f 
B

ac
kl

as
h 

Fl
uc

tu
at

io
n,

 U
 [

ra
d]

A
m

pl
itu

de
 o

f 
B

ac
kl

as
h 

Fl
uc

tu
at

io
n,

 U
 [

ra
d]

0
0

0.2

0.4

0.6

0.8

1

1.2

Gear Alignment, Ψ [rad]

0 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

×10−3

×10−3

1 2 3 4 5 6 7

1 2 3 4 5

Fig. 7. Variation of static transmission error amplitude (due principally to eccentricity sinusoid) with gear orientation. Solid line:

experimental data, dashed line: theoretical data. (a) Eccentricities: driving gear 0:04826� 10�3 m, driven gear 0:05588� 10�3 m. (b)
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with the next corresponding tooth on the opposing gear. As the spur gears used had 18 teeth there were 18
possible gear pair alignments. Fig. 7 shows how the amplitude of the recorded sinusoid varied with angular
alignment for the two gear sets. Also plotted are the equivalent theoretical curves calculated by dividing the
static transmission error due to eccentricity, given in Eq. (7) by the base circle radius.

3.3. Angular motion transmitted through eccentric gear interface

In the following analysis it is assumed that the angular motion transfer between the gear pair acts along the
line of action (the normal to the meshing involutes). We consider the motion at the midpoint of the line
connecting the centres of the two gears, the pitch point. The angle that the line connecting the two gear centres
makes with the positive X -axis, g is given by

g ¼ p� arctan
ðE1 sin y1 þ E2 sin y2Þ

ð2R� E1 cos y1 þ E2 cos y2Þ
, (8)

which by again assuming that the eccentricities are small reduces to g ¼ p.
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The angle of the line connecting the driving shaft centre to the pitch point, z1 is given by

z1 ¼ arctan
E1 sin y1 þ R sinðp� gÞ
E1 cos y1 þ R cosðp� gÞ

� �
, (9)

and similarly from the driven shaft, z2,

z2 ¼ arctan
�E2 sin y2 � R sinðp� gÞ
�E2 cos y2 þ R cosðp� gÞ

� �
. (10)

By substituting R from Eq. (2), and using g ¼ p, Eqs. (9) and (10) become

z1 ¼ arctan
E1 sin y1

E1 cos y1 � R� A sinðy1 þ dÞ

� �
(11)

and

z2 ¼ arctan
�E2 sin y2

�E2 cos y2 þ Rþ A sinðy1 þ dÞ

� �
, (12)

which assuming that eccentricity is small in comparison to the centre distance yields

z1 ¼ z2 ¼ 0. (13)

The distance from the pitch point to the driving shaft centre, reff1 is

reff1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 cos y1 þ R cosðp� gÞÞ2 þ ðE1 sin y1 � R sinðp� gÞÞ2

q
, (14)

which by using the same assumptions as previously, can be simplified to

reff1 ¼ R 1þ
E1

R
cosðy1Þ

� �
, (15)

and similarly the distance from the pitch point to the driven shaft centre reff2 can be expressed as

reff2 ¼ R 1�
E2

R
cosðy2Þ

� �
. (16)

The angle between the common pitch circle tangent (CC) and the positive X direction is g� p=2 so that the
angle of the line of action relative to the positive X -axis is

ffNX ¼ g�
p
2
� x. (17)

The angle of v1, the linear velocity transmitted from the drive gear, relative to the X -axis is

ffv1X ¼
p
2
þ z1, (18)

so that the angle between v1 and the line of action is

ffv1N ¼ ffv1X �ffNX ¼ pþ z1� gþ x. (19)

Similarly, the angle between v2 and the line of action is given by

ffv2N ¼ ffv2X �ffNX ¼ pþ z2� gþ x. (20)

As linear tangential velocity is equal to the angular velocity multiplied by the distance to the centre of rotation,
v ¼ r_y we may obtain

_u1 ¼
_y1reff1 cosðpþ z1� gþ xÞ, (21)

_u2 ¼
_y2reff2 cosðpþ z2� gþ xÞ, (22)

where u1 is the motion of the driving gear along the line of action and u2 is the motion of the driven gear along
the line of action. By substituting in the simplified variables derived previously, Eqs. (21) and (22) can be
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simplified to become

_u1 ¼
_y1rb 1þ

E1

R
cosðy1Þ

� �
, (23)

_u2 ¼
_y2rb 1�

E2

R
cosðy2Þ

� �
. (24)
3.4. Equation of motion

Fig. 8 shows a schematic of a driven gear. u1 is the linear displacement of the drive gear along the line of
action and is a function of the displacement input to the drive shaft and the distance from the gear centre to
the pitch point (see Eq. (23)). b is the size of the half backlash and k is a lumped stiffness. u2 is the linear
displacement of the driven gear along the line of action and is a function of the angular position of the driven
gear and the distance from the gear centre to the pitch point (see Eq. (24)). This can be used to calculate the
driven shaft rotation y2. The equation of motion for the driven shaft is

I €y2 þ c _y2 ¼ bðu1; u2Þ þmgE2 cosðy2Þ, (25)

where I is the moment of inertia of the gear, c is the viscous linear friction coefficient, m is the mass of the gear,
g is gravity and b is the interaction force between the gears.

As the drive fluctuation sinusoid amplitude � (see Eq. (1)) is generally small and y2 is approximately equal to
y1 þC, we can rewrite Eq. (24) as

_u2 ¼
_y2rb 1�

E2

R
cosð2pOtþCÞ

� �
. (26)

By rearranging Eq. (26) in terms of _y2 and €y2 from the equation of motion, Eq. (25), such that it is written in
terms of the linear motion along the line of action, u,

I
€u2

rb 1�
E2

R
cosðy1 þCÞ

� �� I
2pOE2 _u2 sinð2pOtþCÞ

rbR 1�
E2

R
cosðy1 þCÞ

� �2
þ c

_u2

rb 1�
E2

R
cosðy1 þCÞ

� �

¼ bðu1; u2Þ þmgE2 cosðy2Þ. (27)

The interaction term between the gears, bðu1; u2Þ describes whether or not the gears are meshing, we write

bðu1; u2Þ ¼ kBðu1 � u2;bÞ, (28)

where k is a stiffness coefficient, a measure of the lumped torsional rigidity of the shaft assemblies, b is the half
the backlash size, measured along the line of action, and B is a nonlinear backlash function, which describes
the two states of these differential equations, namely when the gears are in contact and when they are out of
u1

2�
k

u2

�2

Fig. 8. A schematic of the simple model for the equation of motion of an eccentric gear pair.
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contact. A credible structure for this backlash function is piecewise linear, so that

Bðu1 � u2;bÞ ¼

u1 � u2 � b; u1 � u24b;

0; ju1 � u2job;

u1 � u2 þ b; u1 � u2o� b:

8><
>: (29)

We define a dynamic transmission error, x that is normalised to the top backlash boundary as

x ¼
u1 � u2

rb

� eðtÞ. (30)

The transmission error defined in Eq. (30) is equivalent to the sinusoidal component of the eccentricity
sinusoid subtracted from the dynamic transmission error in terms of angular displacement. Using this measure
of gear motion and assuming E5R, Eq. (28) becomes

I €xþ c� I2pO
E2

R
sinð2pOtþCÞ

	 

_xþ krbB x;

b
rb

� �
þmgE2 cosðy2Þ

� �
1�

E2

R
cosðy1 þCÞ

� �

¼ I
€u1

rb

� €eðtÞ

� �
þ c� I2pO

E2

R
sinð2pOtþCÞ

	 

_u1

rb

� _eðtÞ

� �
. (31)

Substituting the forcing equation, Eq. (1) into the equation for the linear velocity of the drive gear, Eq. (23),
gives

_u1 ¼ 2pOrb þ OG sinð2pOtþ qÞ, (32)

where

G ¼ 2prb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

1

R2
þ �2 �

2E1�

R
sinðfÞ

s
; q ¼ arctan

E1

R
� � sinf

�� cosf

8><
>:

9>=
>;. (33)

Differentiating Eq. (32) and Eq. (7) and substituting into Eq. (28) gives

I €xþ c� I2pO
E2

R
sinð2pOtþCÞ

� �
_xþ krbB x;

b
rb

� �
þmgE2 cosðy2Þ

� �
1�

E2

R
cosðy1 þCÞ

� �

¼ I
2pO2G

rb

cosð2pOtþ qÞ þ I
4p2O2U

rb

sinð2pOtþ dÞ

þ c� I2pO
E2

R
sinð2pOtþCÞ

� �
2pOþ

OG
rb

sinð2pOtþ qÞ �
2pOU

rb

cosð2pOtþ dÞ

� �
. (34)

Defining a non-dimensionalised time as

t ¼ Ot. (35)

Eq. (35) can be rearranged into the non-dimensional form using the non-dimensional parameters

d ¼
c

IO
; k ¼

rbk

IO2
; Z ¼

mgE2

IO2
(36)

to give (assuming eccentricity and forcing amplitudes are small)

x00 þ d� 2p
E2

R
sinð2ptþCÞ

� �
x0 þ kB x;

b
rb

� �
þ Z cosðy2Þ

� �
1�

E2

R
cosð2ptþCÞ

� �
¼ 2pdþH cosð2ptþ JÞ, (37)

where f g0 is the derivative with respect to t and

H ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F 2 þ 16p4

E2
2

R2
� 8Fp2

E2

R
sinðC� GÞ

s
, (38)
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J ¼ arctan
F sinðGÞ � 4p2

E2

R
sinðCÞ

F cosðGÞ � 4p2
E2

R
cosðCÞ

8><
>:

9>=
>;, (39)

F ¼
1

rb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2U2 þ G2 � 4pUG sinðd � qÞ

q
, (40)

G ¼ arctan

G sin qþ arctan �
d
2p

� �� �
þ 2pU sin d þ arctan

2p
d

� �� �

G cos qþ arctan �
d
2p

� �� �
þ 2pU cos d þ arctan

2p
d

� �� �
8>><
>>:

9>>=
>>;. (41)

Note that if we take the case where the eccentricity on both gears is zero, E1 ¼ E2 ¼ 0, Eq. (37) becomes

x00 þ dx0 þ kB x;
b
rb

� �
¼ 2pd� 2p�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p
cos 2ptþ f� arctan

d
2p

� �� �
. (42)

4. Solution for a high damping, high stiffness system

If we consider the case where the non-dimensionalised damping, d is high and the mass of the gears is low
(which is true in the experiments described in Section 2) the non-dimensionalised mass imbalance Z and the
parametric forcing due to change in centre distance become negligible. This means that Eq. (37) becomes

x00 þ dx0 þ kB x;
b
rb

� �
¼ 2pdþH cosð2ptþ JÞ. (43)

We may show that this equation can exhibit multiple coexisting periodic solutions; namely solutions where the
gears come in and out of contact, and solutions in which the gear pair remains permanently in contact, where
x is always greater than b=rb. These solutions are described in more detail for an equivalent perfectly centred
system with a fluctuating torque input in Ref. [5].

4.1. Theoretical amplitude of forcing which prevents permanent contact

If the gears remain in contact, the solution will remain in the x4b=rb region and Eq. (43) becomes

x00 þ dx0 þ kx ¼ 2pdþ k
b
rb

þH cosð2ptþ JÞ; x4
b
rb

. (44)

By recentring the displacement coordinate so that x̂ ¼ x� ðb=rbÞ � 2pd=k gives

x̂00 þ dx̂0 þ kx̂ ¼ H cosð2ptþ JÞ; x̂4�
2pd
k

. (45)

The steady-state solution to Eq. (45) is a sinusoid, centred at x̂ ¼ 0 with magnitude

jx̂ðtÞj ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk� 4p2Þ2 þ 4p2d2
q . (46)

Therefore, for a permanent contact solution to exist

Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk� 4p2Þ2 þ 4p2d2

q o
2pd
k

(47)

must be satisfied. As the system stiffness k tends to infinity, it can be seen that the critical forcing amplitude at
the interface Hcrit, above which permanent contact solutions cannot theoretically occur, is approximated by

Hcrit � 2pd. (48)
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4.2. Theoretical non-existence of ‘one impact per forcing period’ periodic solutions

For systems of high stiffness, it is also common to model the gear pair by a coefficient of restitution based
impacting model such that Eq. (43) becomes

x00 þ dx0 ¼ 2pdþH cosð2ptþ JÞ; jxjo
b
rb

, (49)

during the freeplay motion. When the two gears impact, at jxj ¼ b=rb, the integration constants of this
solution must be re-evaluated with new initial conditions defined by the time and velocity of impact, t ¼ timpact

xðtimpactþÞ ¼ xðtimpact�Þ,

x0ðtimpactþÞ ¼ �Bx0ðtimpact�Þ, (50)

where B is the coefficient of restitution and subscripts þ and � indicate an instant later and an instant before
timpact, respectively. Equations of the form of Eq. (49) have been shown previously, for example in Ref. [5], to
exhibit periodic loss of contact solutions beneath the critical forcing defined in Eq. (48). The requirement for
the existence of this is that the meshing gear pair impacts at the same point in time at the same velocity every
forcing period. Using the same method as used by Halse we may derive equations of existence criteria for these
periodic solutions [5].

Considering the simplest of these solutions, namely the solutions which impact only the positive driving
surface after M forcing periods allows us to form the following initial conditions just after an impact:

xðtimpactþÞ ¼
b
rb

; x0ðtimpactþÞ ¼ �Bx0ðtimpact�Þ, (51)

and periodicity conditions just before the next impact

xðM þ timpact�Þ ¼
b
rb

; x0ðM þ timpact�Þ ¼ x0ðtimpact�Þ. (52)

Applying these four conditions at the start and end of the freeplay motion (Eq. (49)) yields the following
equations:

b
rb

¼
H

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p sinðW Þ þ 2ptimpact� þ C1 þ C2e
�dtimpact� , (53)

�Bx0ðtimpact�Þ ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ d2
p cosðW Þ þ 2p� dC2e

�dtimpact� , (54)

b
rb

¼
H

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p sinðW þ 2pMÞ þ 2pðtimpact� þMÞ þ C1 þ C2e
�dðtimpact�þMÞ, (55)

x0ðtimpact� þMÞ ¼
Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p2 þ d2
p cosðW þ 2pMÞ þ 2p� dC2e

�dðtimpact�þMÞ, (56)

where

W ¼ 2ptimpact� þ J þ arctan �
2p
d

� �
.

Now by subtracting Eq. (55) from Eq. (53) and Eq. (56) from Eq. (54) we obtain

C2 ¼
2pMedtimpact�

1� e�dM
, (57)

x0ðtimpact�Þ ¼
2pMd
ð1þ BÞ

. (58)
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We can now substitute these into Eq. (56) and solve for timpact�

timpact� ¼
1

2p
arccos

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p
H

Md
ð1þ BÞ

þ
Mde�dM

ð1� e�dM Þ
� 1

� � !
� J � arctan �

2p
d

� �" #
�M, (59)

for which solutions cannot exist if the argument of the arccosine function is greater than one. Therefore for
these periodic solutions to exist the forcing must satisfy

Hmin ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p Md
ð1þ BÞ

þ
Mde�dM

ð1� e�dM Þ
� 1

� �
, (60)

where Hmin is the minimum value of the input forcing at the gear mesh interface that makes these periodic
solutions permissible. Fig. 9 shows plots of the critical values of the forcing H above which meshing gears
cannot stay in contact, given by Eq. (48) and the minimum values of H below which periodic ‘one impact per
M forcing periods’ solutions cannot exist as given by Eq. (60) for a range of non-dimensional damping values.
We have selected the periodicity M ¼ 1 and a coefficient of restitution of B ¼ 1 for analytical simplicity, and as
the minimum forcing for periodic solutions is proportional to the periodicity, hence values of M higher than 1
will result in a curve of higher gradient and thus smaller bounds of existence. Similarly a coefficient of
restitution Bo1 will also reduce the bounds of existence.

Fig. 9 indicates that for the value of non-dimensional damping observed in the experimental rig, d ¼ 2:7
(indicated by the bold dot-dash line), these ‘one impact per M forcing periods’ solutions are not possible.
Therefore we may conclude that some other mechanism is causing the multiple solutions for each fluctuation
amplitude of input forcing.

5. Theoretical existence of multiple solutions due to eccentricity

The preceding analysis has been show to allow multiple solutions simply due to the backlash nonlinearity,
however, not in the parameter range which the experiments in Section 2 demonstrated multiple solutions.
These multiple solutions are heavily dependent on initial conditions. Here we show that multiple solutions
may also be caused by the interaction of the fluctuating input at the shaft and the natural oscillations of
relative displacement caused by the change in backlash size.
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We have shown that the size of the forcing fluctuation at the interface, H, is dependent on the magnitude of
the sinusoidal fluctuation input to the drive gear, the magnitude of the sinusoidal fluctuation due to the static
transmission error and the relative phase between these two sinusoids. Considering the infinite stiffness model
(defined in Eq. (49)) we assume that the meshing gear pair are in constant contact with each other until the
forcing causes the right-hand side of Eq. (49) to become negative. By equating the right-hand side to zero, we
may find the time of this loss of contact, tloss, as

tloss ¼
1

2p
arccos

�2pd
H

� �
�

J

2p
. (61)

Note that there are two solutions to Eq. (61). We are interested in the solution where the right-hand side of
Eq. (49) changes from positive to negative. If the magnitude of H is less than the numerator then the gear pair
will not lose contact. However, in an eccentric system, the magnitude of H is dependent on the phase of the
input forcing sinusoidal relative to the eccentricity sinusoid. Therefore for a system with eccentricity, quiet
permanent contact solutions may be observed at one time and noisy operation may be apparent at other times,
depending on the phase of the input relative to a geometric forcing.

The solution of the freeplay motion Eq. (49) may be calculated as

xðtÞ ¼ 2ptþ
H

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p sin 2ptþ J þ arctan�
2p
d

� �
þ C1 þ C2e

�dt, (62)

where C1 and C2 are integration constants. The initial conditions at loss of contact,

xðtlossÞ ¼
b
rb

; x0ðtlossÞ ¼ 0, (63)

allow the integration constants of Eq. (62) to be calculated as

C2 ¼
e�dtloss

d
2pþ

Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p cos 2ptloss þ J þ arctan�
2p
d

� �" #
, (64)

C1 ¼
b
rb

� C2e
�dtloss � 2ptloss �

H

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ d2

p sin 2ptloss þ J þ arctan�
2p
d

� �
. (65)

In order to find the amplitude of the disconnection, we numerically evaluate the trajectory given by Eq. (63) to
find the minimum, which we call xmin. Here we simply use the ‘min’ function in MATLAB. Therefore the
amplitude of disconnection, a can be written as

a ¼ xmin �
b
rb

� �����
����. (66)

We are able to illustrate how the amplitude of disconnection varies with both phase of input forcing relative to
the calculated eccentricity sinusoid and the amplitude of input forcing by way of contour plots. Fig. 10 shows
theoretical contour plots using the same parameter values as observed on the experimental rig. The three plots
differ by way of initial gear alignment; Fig. 10(a) has an alignment value of C ¼ 0 (Case A), Fig. 10(b) has an
alignment value of C ¼ p=2 (Case B) and Fig. 10(c) has an alignment value of C ¼ p (Case C). Also marked
on each contour plot is the corresponding line of Hcrit which correspond to the point at which contact loss
occurs as defined in Eq. (48).
6. Comparison with experimental results

For comparison purposes, it is possible to create equivalent contour plots to Fig. 10 using experimental
data. To measure the static transmission error, for the first 20 s of each experiment no drive fluctuation was
applied ð� ¼ 0Þ. A sinusoid at the rotational frequency of the gears was fitted to this data. This eccentricity
sinusoid was subtracted from the 60 s section of each experiment where the forcing fluctuation was applied to
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Fig. 10. Theoretical contour plots showing how the amplitude of disconnection (values defined by the right hand colour bar) varied with

the input fluctuation amplitude and phase relative to the eccentricity sinusoid. The amplitude of disconnection is measured as a relative

shaft position, using alignment value (a) Case A: C ¼ 0, (b) Case B: C ¼ p=2 and (c) Case C: C ¼ p.
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give the dynamic transmission error relative to the positive driving surface. The minimum value of these
transmission errors for every forcing period (the amplitude of disconnection) was recorded.

Average values of disconnection amplitude are then plotted against input phase relative to the phase of the
sinusoidal static transmission error due primarily to eccentricity and the amplitude of input forcing as with the
theoretical analysis. Fig. 11(a) shows the contour plot for Case A where the sinusoidal static transmission
error due to eccentricity is smallest. Figs. 11(b) and (c) show the same plots for a medium and large amplitudes
of eccentricity sinusoid, Cases B and C, respectively. Also shown in Fig. 11(c) are crosses referring to the
relevant phase and amplitude of forcing for the three experimental trajectories plotted previously. A, B and C
refer to Figs. 3, 4 and 5, respectively.

It is clear from the contour plots that multiple solutions exist due to the eccentricity. However the
fluctuations observed experimentally (Fig. 11) exceed those predicted theoretically (Fig. 10) for the case where
eccentricity is considered. It is also evident that changing the gear alignment and hence the size of the
eccentricity sinusoid does not have a large effect on the variation in maximum and minimum amplitude of
disconnection, as all of the experimental contour plots have contour bars which span a wide range of input
forcing amplitudes. Theoretically this alignment can have a small effect on this range and where maximum and
minimum amplitudes occur, however, at these values of eccentricity it is not large enough to be significant. In
the next section we will consider the effects of additional tooth profile errors.
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Fig. 11. Experimental contour plots showing how the amplitude of disconnection (values defined by the right hand colour bar) varied with

the input fluctuation amplitude and phase relative to the approximately sinusoidal static transmission error due to eccentricity. Three static

transmission error cases are shown (a) Case A, smallest, (b) Case B, medium, (c) Case C, largest. ‘X’ denotes the input values that

correspond to the experimental trajectories plotted previously ‘X A’ ¼ Fig. 3, ‘X B’ ¼ Fig. 4, ‘X C’ ¼ Fig. 5.
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7. Modelling of further tooth meshing errors

A large range of different disconnection amplitudes are observed experimentally for the same amplitude of
input forcing. The model developed in this paper includes eccentricity but surface profile errors are assumed to
be negligible. In Fig. 12 we have plotted the experimental static transmission error for the same alignment as
Case A (Fig. 11(a)) but with the direction of rotation reversed so that the meshing tooth surfaces are different.
We may directly compare Fig. 12 with Fig. 2(b). It is clear that the eccentricity sinusoid is not easily
established for both cases as further periodic signals with amplitudes of the same order of magnitude as the
eccentricity sinusoid are apparent. It is also clear that the static transmission errors are very different despite
having the same manufacturing technique and approximately the same magnitude of eccentricity sinusoid
(there will be a small difference in the alignment due to the backlash gap). We may show that these errors have
an effect on the disconnection response of the gear system by performing the same experiments as described
previously on the alignment which produces a small amplitude eccentricity sinusoid but with the direction of
rotation reversed. The equivalent experimental contour plot is shown in Fig. 13. This contour plot is
of a completely different shape to the equivalent contour plot running on different tooth surfaces shown in
Fig. 11(a). Therefore we may conclude that further tooth errors must be considered.
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the gross rotation rate (equivalent to Case A) although in this case, the gears are running in the negative direction. This figure may be

directly compared with Fig. 2(a).
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Fig. 13. Experimental contour plot showing how amplitude and phase relative to the eccentricity sinusoid of an input sinusoidal forcing

effect the amplitude of disconnections between a meshing gear pair. This experiment used the same conditions as used in the experiment

which produced Fig. 11(a) but running in the opposite direction.
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Fig. 14 shows state space plots of the three trajectories shown in Figs. 3–5. The eccentricity sinusoid and
its differential are subtracted from both the relative shaft displacement and relative velocity, respectively.
Figs. 14(a) (Case A), (b) (Case B) and (c) (Case C) show the small disconnection amplitude, the non-repeating
disconnection amplitude case and the large disconnection amplitude case, respectively. The dotted lines
indicate the approximate backlash boundary (strictly the negative drive boundary will be some periodic
function of the eccentricity, centred about the straight line that we have plotted).

The key point of interest of these state space plots is at the positive boundary where the gears are in
permanent contact. Here we see a region of small amplitude disconnections with their associated velocities.
These are more clearly seen in Fig. 15; a state space plot of showing the displacement and velocity of the final
forcing period of the Case C experiment. The region of interest is circled using a ‘dot dash’ line. These small
amplitude oscillations are due to manufacturing errors other than eccentricity such as surface finish on each
tooth. These imperfections may cause contact loss at a different time to that predicted in Eq. (61). We
incorporate this into our mathematical model by way of changing the initial conditions given in Eq. (63) to

xðtlossÞ ¼
b
rb

� S; x0ðtlossÞ ¼ V , (67)

where S is the displacement and V is the approximate velocity away from the top surface due to higher order
static transmission terms. It is not in the scope of this investigation to fully model the manufacturing
errors due to tooth finish. Therefore we take approximate values for S and V from experimental findings,
S � 1� 10�3 rad and V � �0:06 rad s�1. We use these new initial conditions to re-evaluate Eqs. (63)–(66) to
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Fig. 14. Experimental state space plots for a forcing amplitude of � ¼ 0:43 and various phases of input. Here the eccentricity sinusoid has

been subtracted. (a) Input phase of 4.3072 rad relative to the eccentricity sinusoid. These experimental data are plotted as a trajectory in

Fig. 3. (b) Input phase of 0.3654 rad relative to the eccentricity sinusoid. These experimental data are plotted as a trajectory in Fig. 4.

(c) Input phase of 1.9503 rad relative to the eccentricity sinusoid. These experimental data are plotted as a trajectory in Fig. 5.
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find new theoretical contour plots for parameter values equivalent to the experimental rig during Case C tests.
Fig. 16(a) uses initial conditions S ¼ 1� 10�3 rad, V ¼ �0:06 rad s�1 and Fig. 16(b) uses S ¼ 1� 10�3 rad
and V ¼ 0:06 rad s�1.

We can see from Fig. 16 that the addition of these initial conditions has a large effect on the theoretical
response of the system. It is also evident that the experimental contours fall approximately within the bounds
of the two theoretical plots. Therefore we may conclude that the small relative velocities observed during
constant meshing can have a major effect on the amplitude of any gear rattle disconnection. This observation
can also be used to explain the different contour shapes of Figs. 13 and 11(a) as the tooth manufacturing
errors differ between the two experiments. We may also use this observation to explain the non-repeating
disconnection amplitudes that are evident, and an example of which can be seen in Figs. 4 and 14(b) as any
small perturbation to the system has the potential to cause the equivalent displacement and velocity initial
conditions to change.

In this paper, no gear lubrication is used, hence the lumped damping parameter is due to bearing losses and
dry friction between the teeth. However, further experimental tests (not reported here) conducted with thin
fluid films of varying viscosity found no substantial difference to the system dynamics. It is believed that at the
low speeds that these experiments are conducted at, the effects of lubrication are negligible.
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Fig. 16. Theoretical contour plot showing how amplitude and phase relative to eccentricity sinusoid of an input sinusoidal forcing effect

the amplitude of disconnections between a meshing gear pair. Alignment value,C ¼ p rad. (a) Initial velocity V ¼ �0:06 rad s�1 and initial

displacement S ¼ 1� 10�3 rad. (b) Initial velocity V ¼ 0:06 rad s�1 and initial displacement S ¼ 1� 10�3 rad. These plots may be

compared with the experimental contour plot in Fig. 11.
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8. Conclusions

Noise and vibration due to gear rattle is an irritating problem. The focus of this paper has been order
vibration caused by an interaction between the static transmission error (due primarily to eccentrically
mounted gears) and an oscillation in the torque driving the geared system. Our approach has combined and
compared experimental results with simplified mathematical models.

Our findings are as follows.
�
 There are large variations in the disconnection amplitude of gears as the relative phase of the input forcing
and the eccentricity sinusoid are varied. This may explain why the dynamics of apparently identically
manufactured machines may vary substantially. This is a quite separate effect to the intermittent behaviour
of a single machine explained by coexisting solutions of nonlinear oscillators [5].

�
 The large variations in disconnection amplitude for a single amplitude of input forcing can only be partly

explained by the interaction between the fluctuations in forcing and due to eccentricity. We give some
preliminary findings which suggest that tooth profiling errors explain the discrepancy.

In order to mitigate this form of gear rattle, the non-dimensionalised damping coefficient d must be high
enough to ensure positivity of the relative forcing (see Eq. (48)), which is undesirable because of the
consequent losses. We should also note that from the practical point of view, the forcing amplitude needs to be
somewhat larger than the theoretical bound (Eq. (48)) to cause problematic large amplitude disconnections
(see Fig. 10). Of course, at this detailed quantitative level, the very simple lumped models that we develop will
have their limitations.

These limitations include the lack of lubricant and frictional effects, which have been neglected as beyond
the scope of this paper. Friction between gear teeth has been shown, for example by Vaishya and Singh [26], to
be highly nonlinear, having both a dissipative and an excitation effect on the system. Further work will be
carried out to consider the interaction of these frictional effects and the effects shown in this paper.
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